Search results for "Number of species"

showing 10 items of 16 documents

Indagini sulla presenza di apoidei in aree marginali di agroecosistemi in Sicilia occidentale (Insecta Hymenoptera Apoidea)

2002

Settore AGR/11 - Entomologia Generale E ApplicataBeescatches by sweepnet and nest trapping total number of species collacted.
researchProduct

Sodium provides unique insights into transgenerational effects of ocean acidification on bivalve shell formation

2016

Ocean acidification is likely to have profound impacts on marine bivalves, especially on their early life stages. Therefore, it is imperative to know whether and to what extent bivalves will be able to acclimate or adapt to an acidifying ocean over multiple generations. Here, we show that reduced seawater pH projected for the end of this century (i.e., pH 7.7) led to a significant decrease of shell production of newly settled juvenile Manila clams, Ruditapes philippinarum. However, juveniles from parents exposed to low pH grew significantly faster than those from parents grown at ambient pH, exhibiting a rapid transgenerational acclimation to an acidic environment. The sodium composition of…

Ocean Acidification International Coordination Centre (OA-ICC)Registration number of speciesSalinityTemperateinorganicAlkalinitySodium/Calcium ratioExperimentTemperature waterCarbon inorganic dissolvedRuditapes philippinarumCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateNorth PacificAlkalinity totalSalinity standard errortotalSodium Calcium ratiopHTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedAcid base regulationCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorContainers and aquaria 20 1000 L or 1 m 2Earth System ResearchContainers and aquaria (20-1000 L or &lt; 1 m**2)Uniform resource locator link to referenceCalcite saturation statewaterGrowth MorphologyContainers and aquaria (20-1000 L or < 1 m**2)Alkalinity total standard errorBenthosUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCAnimaliaBicarbonate ionTypeTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorGrowth rateCarbonate system computation flagAcid-base regulationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentAragonite saturation state standard errorPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideSample IDMolluscaGrowth/MorphologySingle speciesBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelf
researchProduct

Seawater carbonate chemistry and growth, physiological performance of the Manila clam Ruditapes philippinarum

2018

Ocean acidification may interfere with the calcifying physiology of marine bivalves. Therefore, understanding their capacity for acclimation and adaption to low pH over multiple generations is crucial to make predictions about the fate of this economically and ecologically important fauna in an acidifying ocean. Transgenerational exposure to an acidification scenario projected by the end of the century (i.e., pH 7.7) has been shown to confer resilience to juvenile offspring of the Manila clam, Ruditapes philippinarum. However, whether, and to what extent, this resilience can persist into adulthood are unknown and the mechanisms driving transgenerational acclimation remain poorly understood.…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesCondition indexSalinityBicarbonate ion standard deviationinorganicAlkalinity total standard deviationAlkalinityCalculated using seacarb after Orr et al. (2018)Growth rate standard deviationFugacity of carbon dioxide in seawater standard deviationExperimentTemperature waterCarbon inorganic dissolvedRuditapes philippinarumCalculated using seacarb after Nisumaa et al 2010PercentageAragonite saturation stateNorth PacificAlkalinity totalδ13C dissolved inorganic carbon standard deviationtotalpHRespirationTemperaturedissolvedLaboratory experimentCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Carbon dioxide standard deviationTemperature water standard deviationContainers and aquaria 20 1000 L or 1 m 2δ13C dissolved inorganic carbonEarth System Researchδ13CContainers and aquaria (20-1000 L or &lt; 1 m**2)Metabolic rate of oxygen standard deviationstandard deviationUniform resource locator link to referenceCalcite saturation stateFugacity of carbon dioxide in seawaterwaterPartial pressure of carbon dioxideGrowth MorphologyContainers and aquaria (20-1000 L or < 1 m**2)Aragonite saturation state standard deviationBenthosUniform resource locator/link to referenceOther studied parameter or processSalinity standard deviationOcean Acidification International Coordination Centre OA ICCAnimaliaCarbon inorganic dissolved standard deviationCalcite saturation state standard deviationTypeBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)SpeciesGrowth rateCondition index standard deviationPartial pressure of carbon dioxide standard deviationMetabolic rate of oxygenCarbonate system computation flagpH standard deviationCarbonate ion standard deviationdissolved inorganic carbonCalculated using seacarb after Orr et al 2018Fugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologySingle speciesFugacity of carbon dioxide water at sea surface temperature wet airBenthic animalsδ13C standard deviationCoast and continental shelf
researchProduct

Ocean acidification affects fish spawning but not paternity at CO2 seeps

2016

Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher r…

Eggs standard errorOcean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesIdentificationSalinityEggsinorganicAlkalinityExperimentNumber standard errorDominant male paternityTemperature waterCarbon inorganic dissolvedNumber of individualsCalculated using seacarb after Nisumaa et al 2010Number of spawning events standard errorAragonite saturation stateFish standard lengthChordataAlkalinity totalSalinity standard errortotalCO2 ventReplicatesCourtship standard errorpHPelagosReproductionSymphodus ocellatusTemperatureNumberPartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorIndividuals standard errorEarth System ResearchField observationFOS: Medical biotechnologyUniform resource locator link to referencePotentiometric titrationCalcite saturation stateLocationPotentiometricwaterNumber of spawning eventsAgeUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaEggs areaBehaviourTypeBicarbonate ionNektonEggs area standard errorTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorWet massDominant male paternity standard errorCalculated using CO2SYSEvent labelIndividualsCourtshipCarbonate system computation flagstandard lengthFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airFishCarbon dioxideSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelf
researchProduct

Seawater carbonate chemistry and somatic and otolith growth relationship of Symphodus ocellatus

2019

Ocean acidification (OA) may have varied effects on fish eco-physiological responses. Most OA studies have been carried out in laboratory conditions without considering the in situ pCO2/pH variability documented for many marine coastal ecosystems. Using a standard otolith ageing technique, we assessed how in situ ocean acidification (ambient, versus end-of-century CO2 levels) can affect somatic and otolith growth, and their relationship in a coastal fish. Somatic and otolith growth rates of juveniles of the ocellated wrasse Symphodus ocellatus living off a Mediterranean CO2 seep increased at the high-pCO2 site. Also, we detected that slower-growing individuals living at ambient pCO2 levels …

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesIdentificationSalinityinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateChordataAlkalinity totaltotalCO2 ventTime in dayspHPelagosSymphodus ocellatusTemperaturedissolvedLength totalCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Temperature water standard deviationEarth System Researchstandard deviationField observationUniform resource locator link to referencePotentiometric titrationCalcite saturation stateLengthPotentiometricwaterPartial pressure of carbon dioxideSiteGrowth MorphologyAgeUniform resource locator/link to referenceSalinity standard deviationOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaTypeSampling dateBicarbonate ionNektonCalculated using seacarb after Nisumaa et al. (2010)SpeciesCalculated using CO2SYSPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideGrowth/MorphologySingle speciesFugacity of carbon dioxide water at sea surface temperature wet airsense organs
researchProduct

Seawater carbonate chemistry and kelp densities and coral coverages at three study locations and photosynthesis and calcification of corals measured …

2021

Ocean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral-dominated systems…

Ocean Acidification International Coordination Centre (OA-ICC)Net calcification rate of calcium carbonate lightCommunity composition and diversityAlkalinity total standard deviationunique identificationTemperature waterCarbon inorganic dissolvedNet calcification rate of calcium carbonateCalculated using seacarb after Nisumaa et al 2010Color descriptionRespiration rate oxygenpHRespirationMonthCarbonate ionLaboratory experimentField experimentRespiration rateunique identification URIstandard deviationlightAcropora solitaryensisCalcification/DissolutionCalcite saturation statewaterPartial pressure of carbon dioxideSiteGrowth MorphologyRocky-shore communityAragonite saturation state standard deviationPorites heronensisCarbon inorganic dissolved standard deviationTypeCalculated using seacarb after Nisumaa et al. (2010)Primary production PhotosynthesisSpeciesBottles or small containers/Aquaria (&lt;20 L)fungiEvent labeltechnology industry and agricultureCarbonate system computation flagpH standard deviationbiochemical phenomena metabolism and nutritionFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airEntire communitySingle speciesCalcification DissolutionBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoralCoast and continental shelfPhotosynthetic efficiencySpecies unique identification (URI)darkIdentificationRegistration number of speciesSalinityTemperateBottles or small containers/Aquaria (<20 L)inorganicAlkalinityArea localityNet photosynthesis rate oxygenExperimentArea/localityAragonite saturation stateNorth PacificAlkalinity totalBottles or small containers Aquaria 20 LtotalCO2 ventCalcification rate of calcium carbonateTemperaturedissolvedPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Temperature water standard deviationNet photosynthesis rateEarth System ResearchNet calcification rate of calcium carbonate darkField observationgeographic locationsSpecies unique identificationBenthosCnidariaDiameterOcean Acidification International Coordination Centre OA ICCAnimaliaBicarbonate ionGrowth ratePartial pressure of carbon dioxide standard deviationPrimary production/PhotosynthesisTreatmentCarbon dioxideGrowth/MorphologyRocky shore communityShootsoxygen
researchProduct

Effects of ocean acidification on embryonic respiration and development of a temperate wrasse living along a natural CO2 gradient

2016

Volcanic CO2 seeps provide opportunities to investigate the effects of ocean acidification on organisms in the wild. To understand the influence of increasing CO2 concentrations on the metabolic rate (oxygen consumption) and the development of ocellated wrasse early life stages, we ran two field experiments, collecting embryos from nesting sites with different partial pressures of CO2 [pCO2; ambient (400 µatm) and high (800-1000 µatm)] and reciprocally transplanting embryos from ambient- to high-CO2 sites for 30 h. Ocellated wrasse offspring brooded in different CO2 conditions had similar responses, but after transplanting portions of nests to the high-CO2 site, embryos from parents that sp…

StageOcean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityinorganicYolk area standard errorAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenChordataAlkalinity totaltotalCO2 ventpHPelagosReproductionRespirationSymphodus ocellatusTemperatureYolk areadissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentTemperature water standard deviationTime pointstandard errorRespiration rateEarth System Researchstandard deviationFOS: Medical biotechnologyUniform resource locator link to referenceTime point descriptiveHatchling lengthCalcite saturation statewaterPartial pressure of carbon dioxidedescriptiveGrowth MorphologyFigureUniform resource locator/link to referenceSalinity standard deviationOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaEggs areaTypeBicarbonate ionNektonEggs area standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciesPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationHatchling length standard errorFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentOxygenPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideGrowth/MorphologySingle speciesOxygen standard deviationFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelf
researchProduct

Seawater carbonate chemistry and carbon sources of mussel shell carbonate

2018

Ocean acidification and warming is widely reported to affect the ability of marine bivalves to calcify, but little is known about the underlying mechanisms. In particular, the response of their calcifying fluid carbonate chemistry to changing seawater carbonate chemistry remains poorly understood. The present study deciphers sources of the dissolved inorganic carbon (DIC) in the calcifying fluid of the blue mussel (Mytilus edulis) reared at two pH (8.1 and 7.7) and temperature (16 and 22 °C) levels for five weeks. Stable carbon isotopic ratios of seawater DIC, mussel soft tissues and shells were measured to determine the relative contribution of seawater DIC and metabolically generated carb…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityMytilus edulisinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedhemic and lymphatic diseasesCalculated using seacarb after Nisumaa et al 2010PercentageAragonite saturation stateNorth Pacificδ13C dissolved inorganic carbon standard deviationAlkalinity totalSalinity standard errortotalpHTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedLaboratory experimentCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorContainers and aquaria 20 1000 L or 1 m 2δ13C dissolved inorganic carbonEarth System Researchδ13CContainers and aquaria (20-1000 L or &lt; 1 m**2)standard deviationUniform resource locator link to referencecirculatory and respiratory physiologyCalcite saturation statewaterContainers and aquaria (20-1000 L or < 1 m**2)BenthosAlkalinity total standard errorUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCAnimaliaTypeBicarbonate ionTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorCalcite saturation state standard errorCarbonate system computation flagdissolved inorganic carbonFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airBenthic animalsδ13C standard deviationBiomass Abundance Elemental compositionCoast and continental shelf
researchProduct

Functional consequences of prey acclimation to ocean acidification for the prey and its predator

2016

Ocean acidification is the suite of chemical changes to the carbonate system of seawater as a consequence of anthropogenic carbon dioxide (CO2) emissions. Despite a growing body of evidences demonstrating the negative effects of ocean acidification on marine species, the consequences at the ecosystem level are still unclear. One factor limiting our ability to upscale from species to ecosystem is the poor mechanistic understanding of the functional consequences of the observed effects on organisms. This is particularly true in the context of species interactions. The aim of this work was to investigate the functional consequence of the exposure of a prey (the mussel Brachidontes pharaonis) t…

Condition indexRegistration number of speciesSalinityTemperateBottles or small containers/Aquaria (<20 L)inorganicAlkalinityBrachidontes pharaonisIncubation durationExperimentTemperature waterCarbon inorganic dissolvedAssimilation efficiencyEriphia verrucosaBreaking loadCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateAlkalinity totalBottles or small containers Aquaria 20 LtotalpHTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorEarth System ResearchUniform resource locator link to referenceanimal structuresCalcite saturation stateArthropodaLengthwaterGrowth MorphologyFigureBenthosUniform resource locator/link to referenceMediterranean SeaAnimaliaBehaviourBicarbonate ionTime in secondsTypeTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorCalcite saturation state standard errorGrowth rateBottles or small containers/Aquaria (&lt;20 L)Calculated using CO2SYSfungiCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentAragonite saturation state standard errorPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologyBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfSpecies interaction
researchProduct

Seawater carbonate chemistry and nest guarding behaviour of a temperate wrasse

2021

Organisms may respond to changing environmental conditions by adjusting their behaviour (i.e., behavioural plasticity). Ocean acidification (OA), resulting from anthropogenic emissions of carbon dioxide (CO2), is predicted to impair sensory function and behaviour of fish. However, reproductive behaviours, and parental care in particular, and their role in mediating responses to OA are presently overlooked. Here, we assessed whether the nesting male ocellated wrasse Symphodus ocellatus from sites with different CO2 concentrations showed different behaviours during their breeding season. We also investigated potential re-allocation of the time-budget towards different behavioural activities b…

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationPotentiometric titrationRegistration number of speciesSalinityTemperateCalcite saturation statePotentiometricinorganicwaterAlkalinitySiteTemperature waterCarbon inorganic dissolvedUniform resource locator/link to referenceCalculated using seacarb after Nisumaa et al 2010Mediterranean SeaOcean Acidification International Coordination Centre OA ICCAnimaliaAragonite saturation stateBehaviourBicarbonate ionTime in secondsTypeNektonAlkalinity totalChordataCalculated using seacarb after Nisumaa et al. (2010)totalCO2 ventSpeciespHPelagosSymphodus ocellatusTemperatureCarbonate system computation flagdissolvedFugacity of carbon dioxide (water) at sea surface temperature (wet air)Carbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideSingle speciesEarth System ResearchFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfField observationUniform resource locator link to reference
researchProduct